Seeing through the haze

The Cassini/Huygens challenge of mapping Titan's surface

Benoît Seignovert1, Stéphane Le Mouélic2 & Christophe Sotin2

1Observatoire des Sciences de l'Univers Nantes Altantique (Osuna), CNRS UAR 3281, Nantes Université

2Laboratoire de Planétologie et Géosciences (LPG), CNRS UMR 6112, Nantes Université

20 years celebration of Huygens landing  | 2025/09/18
Creative Commons “Attribution-Share Alike” license icon
osuna.slides.com/seignovert/huygens-20-years

Pioneer 11 (1979)

Raw data

First image of Titan from a spacecraft

Processed image?

Voyager 1 & 2 (1980 - 1981)

No structure visible

on the surface

Karkoschka et al. 1995
Smith et al. 1981
Smith et al. 1982

Voyager 1 & 2 (1980 - 1981)

Titan wrong colors (OGB)

Titan true colors (RGB)

re-processed

original

Sensing Titan surface (1991)

90°W
270°W
The optical depths that we derive for Titan's haze and clouds are small enough to allow us to sense the surface of Titan at 4900, 6250, and 7700 cm-1. The most plausible interpretation of the albedos determined at these wavenumbers suggests a surface dominated by "dirty" water ice. A global ethane ocean is not compatible with these albedos.
Griffith et al. 1991

2.04 µm

2.09 µm

2.12 µm

2.17 µm

2.29 µm

2.04 µm       2.09 µm      2.12 µm       2.17 µm       2.29 µm

Smith et al. 1996
PIA01465

Hubble Space Telescope (1994)

F1024M

180°
90°W
270°W

First orbital observations

0.85 - 1.05 µm

F850LP

F673N

HST

F850LP

Voyager 1

Orange filter

Adapted from
Richardson et al. 2004

CFHT (1998)

Coustenis et al. 2001

H1 (1.60 µm) | H2 (1.64 µm) | J1 (1.29 µm) | J2 (1.18 µm)

with adaptative optics

in the wings of the CH4 bands

Resolved ground based images

Gemini & Keck (2001)

Roe et al. 2002

18/12/2001

Resolved ground based images with adaptative optics

20/12/2001

21/12/2001

He I (2.06 µm)

VTL (2002-2004)

Hartung et al. 2004

(1.575, 1.600, 1.625) µm

1.575 µm

Best knowledge

before Cassini-Huygens

Gendron et al. 2004

TA Cassini first observations (2004)

VIMS

ISS CB3 (0.930 µm)

ISS UV3 (0.338 µm)

1477459118_1
N1477322123_4
N1477322195_4

Huygens landing (2005)

Seeing below the haze

down to the ground

PIA08119
PIA06440

Huygens

from landscape

to map

Karkoschka et al. 2016

+

Building a global VIMS map

2004

2005

2010

2016

2018

1.4 km/px

Le Sotin et al. 2005
Barnes et al. 2007
Le Mouélic et al. 2012
MacKenzie et al. 2016
Le Mouélic et al. 2019

Building a global ISS map

2004

2005

2006

2007

2009

2011

2015

2018

2025

PIA06086
PIA06201
PIA08346
PIA08399
PIA11149
PIA14908
PIA19658
PIA22770
Weller et al. 2025

730 m/px

Building a global RADAR map

350 m/px

2005

2011

2015

PIA08100
PIA20024
RADAR Team / USGS

Geological global map

Lopes et al. 2020

Merging the datasets VIMS + ISS

VIMS

VIMS (L*)

VIMS (a*)

VIMS (b*)

ISS

VIMS + ISS (L*)

VIMS + ISS

Seignovert et al. 2019

Merging the datasets VIMS + ISS

Seignovert et al. 2019

landing site

10.573°S 192.335°W

VIMS

(1.59 / 1.27 µm,  2.03 / 1.27 µm,  1.27 / 1.08 µm)

ISS (0.930 µm)

RADAR (2.2 cm)

50 km

+

+

DISR

(0.85 + 0.754) µm / 2

0.823 µm

0.935 µm

+

Karkoschka et al. 2016
Le Mouélic et al. 2019

+

Selk crater

landing site (2034)

VIMS (1.58 µm)

ISS (0.930 µm)

RADAR (2.2 cm)

50 km

Barnes et al. 2021

Post Cassini

JWST observations (👀 C. Nixon's talk)

Nixon et al. 2025
Adapted from Seignovert et al. 2021
20 years celebration of Huygens landing  | 2025/09/18

Conclusions

Seeing through Titan's haze is hard!

It's surface is only visible in limited IR windows

Titan's atmosphere is unique in the solar system

It took 13+ years to build global maps

Most of its surface is known at km-scale

Titan seen from Earth

Kuiper 1944

APOD 2025-07-24

PIA 21923

VIMS-IR global map (false colors)

Simultaneous observations (2017)

Cassini

Add Christophe Keck

observations here

Keck

Sensitivity of radiance with respect to surface reflectivity

Courtesy: S. Vinatier

Courtesy: S. Vinatier

Sensitivity of radiance with respect to surface reflectivity